Hierarchy of rational order families of chaotic maps with an invariant measure
نویسندگان
چکیده
منابع مشابه
Hierarchy of random deterministic chaotic maps with an invariant measure
Hierarchy of one and many-parameter families of random trigonometric chaotic maps and one-parameter random elliptic chaotic maps of cn type with an invariant measure have been introduced. Using the invariant measure (Sinai-Ruelle-Bowen measure), the Kolmogrov-Sinai entropy of the random chaotic maps have been calculated analytically, where the numerical simulations support the results .
متن کاملHierarchy of Chaotic Maps with an Invariant Measure and their Compositions
We give a hierarchy of many-parameter families of maps of the interval [0, 1] with an invariant measure and using the measure, we calculate Kolmogorov–Sinai entropy of these maps analytically. In contrary to the usual one-dimensional maps these maps do not possess period doubling or period-n-tupling cascade bifurcation to chaos, but they have single fixed point attractor at certain region of pa...
متن کاملstudy of hash functions based on chaotic maps
توابع درهم نقش بسیار مهم در سیستم های رمزنگاری و پروتکل های امنیتی دارند. در سیستم های رمزنگاری برای دستیابی به احراز درستی و اصالت داده دو روش مورد استفاده قرار می گیرند که عبارتند از توابع رمزنگاری کلیددار و توابع درهم ساز. توابع درهم ساز، توابعی هستند که هر متن با طول دلخواه را به دنباله ای با طول ثابت تبدیل می کنند. از جمله پرکاربردترین و معروف ترین توابع درهم می توان توابع درهم ساز md4, md...
Chaotic Maps with Rational Zeta Function
Fix a nontrivial interval X C R and let / e C1(X,X) be a chaotic mapping. We denote by Aoo (/) the set of points whose orbits do not converge to a (one-sided) asymptotically stable periodic orbit of / or to a subset of the absorbing boundary of X for /. A. We assume that / satisfies the following conditions: (1) the set of asymptotically stable periodic points for / is compact (an empty set is ...
متن کاملSynthesizing Chaotic Maps with Prescribed Invariant Densities
The Inverse Frobenius-Perron problem (IFPP) concerns the creation of discrete chaotic mappings with arbitrary invariant densities. In this note, we present a new and elegant solution to the IFPP, based on positive matrix theory. Our method allows chaotic maps with arbitrary piecewise-constant invariant densities, and with arbitrary mixing properties, to be synthesized.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pramana
سال: 2006
ISSN: 0304-4289,0973-7111
DOI: 10.1007/s12043-006-0024-y